What are a few direct and indirect costs of the “block size debate”?

About six weeks ago I mentioned a dollar figure during a panel at the Consensus event in NYC: $6 million. Six million USD is a loose estimate — for illustrative purposes — of the amount of engineering time representing thousands of man hours over the past 7-9 months that has gone into a productivity black hole surrounding the Bitcoin block size debate.

A little recent history

While there had been some low intensity discussions surrounding block size(s) over the past several years, most of that simmered in the background until the beginning of 2015.

On January 20th Gavin Andresen posted a 20 MB proposal which was followed over the subsequent weeks by a number of one-and-done counterpoints by various developers.

About four months later, beginning on May 4, Gavin posted a series of blog articles that kicked things up a notch and spurred enormous amounts of activity on social media, IRC, web forums, listservs, podcasts and conferences.

The crescendo of public opinion built up over the summer and reached a new peak on August 15th with a post from Mike Hearn, that Bitcoin would fork into two by the beginning of next year.

The passionate enthusiasts on all sides of the spectrum took to social media once again to voice their concerns.  During the final two weeks of August, the debate became particularly boisterous as several moderators on reddit began to ban discussions surrounding Bitcoin XT (among other forks and proposals).  There was even an academic paper published that looked at the sock puppets involved in this period: Author Attribution in the Bitcoin Blocksize Debate on Reddit by Andre Haynes.

Ignoring the future evolution of block size(s), with respect to the opportunity costs of the debate itself: investors and consumers have unintentionally funded what has turned out to be a battle between at least two special interest groups. 1

So where does the $6 million figure come from?

Of the roughly $900 million of VC funding related to Bitcoin itself that has been announced over the past 3 years, about half has been fully spent and went towards legal fees, domain names, office rent, conference sponsorship’s, buying cryptocurrencies for internal inventory and about a dozen other areas.2

At the current burn rate, Bitcoin companies collectively spend about $8-$10 million a month, perhaps more.  And since the debate is not isolated to development teams, because upper management at these companies are involved in letter writing campaigns (and likely part of the sock puppet campaigns), then it could be the case that 5-10% of on-the-clock time at certain companies was spent on this issue.

Consequently, this translates into about $400,000 to $1 million each month which has been redirected and spent funding tweets, reddit posts, blog posts, conferences, research papers and industry conferences.3

What about specific numbers?

For instance, with around 150-200 attendees the Montreal scalability conference likely absorbed $250,000 from everyone involved (via travel, lodging, food, etc.).  Similarly, one independent estimate that Greg Maxwell mentioned at the same Consensus event was his back-of-the-envelope projection of the opportunity costs: a few hundred thousand USD in the first couple weeks of May alone as engineers were distracted with block sizes instead of shipping code.

While a more precise number (+/-) could probably be arrived at if someone were to link individual developer activity on the dev mailing list/reddit/twitter with their estimated salaries on Glassdoor — since this past spring roughly $6 million or so has probably gone towards what has amounted to basically two diametrically opposed political campaigns.

And the issue is still far from resolved as there are more planned scalability conferences, including one in Hong Kong in early December.

Why is it a black hole though?  Surely there is utility from the papers and projects like Lightning, right?

It’s a money pit because it doesn’t and cannot resolve the coordination problem that decentralized governance creates.  I have an upcoming paper that briefly touches on this issue (in Appendix A): the key point is that any time decision making is decentralized then specific trade-offs occur.

In this case, due to an intentional power vacuum in which there is no “leader,” special interest groups lobby one another for the de facto right to make decisions.  Some decisions, like raising the minimum transaction relay fees involve less tweets and downvotes and are for various reasons considered less important as others.  Yet ultimately, de jure decision making remains out of reach.

Not the first time to a rodeo

Because decentralized governance (and external social consensus) was/is a key feature for many cryptocurrencies, this type of political activity could happen again with say, increasing the money supply from 21 million or if KYC becomes mandatory for all on-chain interactions.

Again, this was bound to happen because of the tragedy of the commons: because the Bitcoin network is a public good that lacks an explicit governance structure.  Anytime you have a lack of formal governance you often end up with an informal power structure that makes it difficult to filter marketing fluff from sock puppets like Cypherdoc (aka Marc Lowe) from actual fact-filled research.

And this subsequently impacts any project that relies on the Bitcoin network as its security mechanism.  Why?  According to anecdotes, projects from new organizations and enterprises have reconsidered using public blockchains due to the aforementioned inherent governance hurdles alone.

After all, who do they call when the next Mexican standoff, block reorg or mutually assured destruction situation arises?  There is no TOS, EULA or service-level agreement and as a result they look at other options and platforms.4

  1. It is probably too simplistic to say that, with $6 million in funding, these same developers could have simply created a new system, like Ethereum, from scratch that factors in scalability challenges from day one.  It is unlikely that these same developers would have come to agreement on what to spend those funds on as well. []
  2. See What impact have various investment pools had on Bitcoinland? and Flow of investments funds in Bitcoinland []
  3. The academic term for this is single-issue politics. []
  4. For instance, Tezos was designed specifically with a self-amending chain in mind due to this issue. []

Some housekeeping of events and interviews

It has been a little while since I posted the events, panels and presentations I have been involved with.  Below is some of the public activity over the past 5-6 months.

Interviews with direct quotes:

Indirect quotes:

Academic citations:

Presentations, panels and events:

The great pivot? Or just this years froth?

smjmeAbout a year ago I briefly explored the PR and branding challenges of Bitcoin, a topic that has been independently discussed by others.

Over the past 6 months there has been a visible trend in the overall “Bitcoin” space to rebrand or not use the term “Bitcoin” on corporate material.  This has been done for a variety of reasons.

Some startups simply are no longer touching or interfacing with bitcoins or the Bitcoin network.  Others do not want to be affiliated with the term preferring the alternative “Blockchain” as a catch-all euphemism.

For instance, below are 10 companies which raised their Series A (and sometimes more) and were originally affiliated with “Bitcoin” in some manner but are no longer publicly positioning themselves as such:

  • Abra ($14 million): originally launched as a “rebittance” company, still claims to use the Bitcoin network but the word Bitcoin does not appear on its homepage
  • BitGold ($5.3 million): pivoted from Bitcoin last December
  • Bitreserve ($14.6 million): rebranded as Uphold and now vocally moving away from Bitcoin
  • ChangeTip ($4.25 million): removed the word Bitcoin from its frontpage, now focused on USD-denominated tips
  • Chain ($43.7 million): after closing its recent B round, remarketed from Bitcoin-only and removed the word Bitcoin from its frontpage except in the headlines of past news articles
  • Circle ($76 million): rebranded after receiving a Bitlicense; neither its frontpage nor its new 60 second ad use the word Bitcoin
  • Cryex ($10 million): the word Bitcoin does not appear on its frontpage
  • Mirror, formerly Vaurum ($12.8 million): the word Bitcoin does not appear on its frontpage (but does on some older blog posts)
  • Peernova ($19 million): originally a Bitcoin mining company that is no longer affiliated with Bitcoin at all
  • Vogogo ($21 million): the word Bitcoin does not appear on its frontpage

A few others who have done marketing changes (some more substantive than others):

  • BTC China ($5 million): still focused on its virtual currency exchange renamed itself as BTCC to move further abroad into the international marketplace
  • itBit ($28.25 million): in addition to running its virtual currency exchange, they also launched the Bankchain initiative this past summer
  • DAH: originally planned on using the Bitcoin blockchain but broadened its scope during the summer after acquiring Hyperledger; the word Bitcoin does not appear on its homepage although it still uses the network for product launches (like Pivit)
  • Symbiont: originally used the Counterparty platform and the Bitcoin network as part of its financial service, but has now built a permission-based system
  • Align Commerce, Serica and many others do not use the word Bitcoin on their homepages yet still use the Bitcoin network for some lines of business
  • Coindesk renamed their quarterly report: “State of Bitcoin and Blockchain”
  • Inside Bitcoins (the conference circuit) added “with Blockchain Agenda” prominently at the top of their homepage

What about venture capital itself?

btcstartusp

Source: CB Insights

As visualized in the chart above, Bitcoin-related investments have declined the past two quarters.

However, the chart is not fully accurate as CBI includes 21inc funding as “one” round in Q1 2015.  According to Nathaniel Popper, 21inc did not raise its war chest in one round but rather over the course of 3 rounds.  So it is likely that Q1 2015 probably was altogether around $175 million as the other ~$60 million were raised in 2013 and 2014.  Similarly Q3 2015 should be less as Chain.com is no longer a Bitcoin-specific company.

What about other changes in the VC world?

Crypto Currency Partners: renamed itself Blockchain Capital

Boost VC: while the word Bitcoin does appear on its homepage, in his most recent writeup of its portfolio, Adam Draper does not use the word Bitcoin but instead uses “block chain” to describe his investments

Pantera: while it remains publicly committed to Bitcoin, based on its most recent newsletter the team likely views the word “blockchain” as more palatable to investors and LPs.

For instance, the year-over-year comparison of word frequency between two Pantera Capital newsletters:

DCG: launched its website during the summer, prominently display the word “blockchain technology” instead of Bitcoin, despite the fact that nearly all of its portfolio is Bitcoin-reliant or Bitcoin-specific.

In fact it appears that the trend by some VC-backed Bitcoin-heavy portfolio’s adopting the term “blockchain” is a marketing gimmick as neither DCG, Pantera nor Boost have purposefully invested in non-Bitcoin blockchain companies.  In fact, individuals such as Barry Silbert (founder of DCG) are outspoken in their dismissal of non-Bitcoin blockchains.

What are some reasons for the decline shown in the CBI numbers?

Part of it has to do with the fact that consumer-facing Bitcoin companies have found muted traction, if any at all.  For instance, BitPay (which raised $32.5 million) recently laid off most of its staff, liquidated a large portion of its bitcoin holdings, raised its fees in order to stay afloat and did a (non-pivot) pivot towards catering to other enterprises.  This looks bad for other Bitcoin-branded companies looking to try and raise funds for consumer-facing products.

Another reason is that some of the buzz and froth simmered down with the price of bitcoin itself.  It seems common parlance to hear people at conferences say “the price of bitcoin doesn’t matter” but that is very untrue for fundraising.  If prices were on a tear into orbit or were managing some stability higher than it was 2 years ago, it’d be easier for entrepreneurs to convince new investors (not just the same 4-5 funds) to deploy new capital in Bitcoin-specific products.  Maybe Gemini will change that?

So where has some capital been deployed instead?

Into that amorphous catch-all term: “blockchain.”

There are just over a dozen “blockchain” / distributed ledger startups collectively trying to raise $200 million at over a $1 billion valuation.

And incidentally, there are a couple companies in each of the VC portfolio’s above that have now built non-Bitcoin blockchains or ledgers.

Some of them are currently raising while others recently closed funding rounds.

This includes: Symbiont, Chain, Peernova, Ripple, Eris, Setl, Credits, Tradeblock, itBit, Tembusu, Clearmatics, MultiChain, BlockStack, DAH, Blockstream (via Liquid) and a few others in stealth that well, are in stealth.

What does being a “blockchain” company mean?

blockchain search google

January 2009 – October 2015. Source: Google Trends

The term “blockchain technology” is basically a catch-all term at this point.

In many cases, when someone at a fintech conference now says they’re interested in “blockchain technology” it typically means they are interested in common elements like public/private key signing, resolutions to double-spending and permission-based multitenancy environments.  Bitcoin, as described by Gwern Branwen, was not the creator of those elements.

What will next year look like?  Will there be a new term that is co-opted?  Or are we stuck using a word that never appeared in the original Satoshi white paper (it had a demarcated space between “block chain”) and has now become an umbrella term for many different neat ideas?

See also: Needing a token to operate a distributed ledger is a red herring and also A blockchain with emphasis on the “a”

Designing a Global Fabric for Finance (G3F)

Over the past two weeks there have been a number of news stories related to R3 — a fintech startup that I now work at.  The first of which was from the Financial Times, entitled Blockchain initiative backed by nine large investment banks.  Today we announced an additional 13 banks have joined our effort.

Although I cannot speak for the whole team, I can give you the vision I have with the aim of bringing clarity to the various bits of information that have been circulating.

Homework

Over the past year, the R3 team has spent copious amounts of time conducting due diligence on the greater “distributed ledger” or “shared ledger” space.  I joined as an advisor in January when they were already knee deep in the task; I am now Director of Market Research.

What I and several others on the team found is that while there were a number of orthogonally useful pieces floating around (such as multisig and ideas like Engima), none of the publicly available technology platforms that has been funded by venture capital provided a flexible, holistic base layer with the specific functional requirements for secure, scalable enterprise use.

This includes incorporating non-functionals that globally regulated financial institutions must adhere to such as: compliance, privacy, reporting and reconciliation.  Similarly, many of the venture funded projects also failed to address the business requirements of these same institutions.

In sportsball terms, the nascent industry is 0-for-2 in their current approach.

Some of that is understandable; for example, Bitcoin solves a set of problems for a niche group of individuals operating under certain security assumptions (e.g., cypherpunks not wanting to interface with banks or governments).  Regulated financial institutions do not operate under those assumptions, thus axiomatically Bitcoin in its current form is highly unlikely to be a solution to their problems at this time.  As a consequence, the technology solutions pitched by many of these startups are hammers looking for nails that do not exist in the off-chain world.

R3 is not a Bitcoin company nor a cryptocurrency company.  We are not seeking to build a “better” or even a different type of virtual currency.  Why not?  Instead of starting with a known solution, such as a spreadsheet, we are starting with the problem set which continually influences the customized solution.  This is one of the biggest reasons I was attracted to this specific effort: R3 is not a re-enactment of Field of Dreams.  Build it with the hopes that someone will come is the siren song, the motto even, for throngs of failed startups.

But weren’t the original shared ledgers — often called blockchains — robust enough to protect all types of assets and a legion of use-cases?

Many public ledgers were originally designed to secure endogenous, on-chain information (e.g., the native token) but in their current incarnations are not fit for purpose to handle off-chain titles.  For instance, Bitcoin was not initially designed to secure exogenous data — such as transmitting high-value off-chain securities — vis-a-vis pseudonymous miners.  And it appears all attempts to mutate Bitcoin itself into a system that does, ends up creating a less secure and very expensive P-o-P network.

What are we doing then?

Rather than try to graft and gerrymander our business requirements onto solutions designed for other problems, we are systematically looking at a cornucopia of challenges and cost-drivers that currently exist at financial institutions.  We will seek to address some of these drivers with a generalized agnostic fabric, with layers that fulfill the critical infrastructure specifications of large enterprises and with services that can be run on top in a compliant fashion.

What is a Global Fabric for Finance (G3F) then?  If you had the chance to build a new financial information network from scratch that incorporated some of the elements and learnings of the shared ledger world, what would it look like?

For starters, a fabric specifically built for and by trusted parties does not need something akin to mining or block rewards.  In fact, not only is there is no Sybil spoofing problem on a trusted network but there are already many known, existing methods for securely maintaining a transaction processing system.  Consequently, needing a block reward may (or may not) be a red herring and has likely been a costly, distracting sideshow to other types of utility that this technology represents.

If trust is not an issue, what use (as Arvind Narayanan and certain high profile enthusiasts have asked) is any part of the shared ledger toolkit?  There are a number of uses, many of which I touched on in a paper back in April.

What about specific use-cases?

While a number of ideas that have surfaced at conferences and media events over the past summer, R3 remains focused on an approach of exploration and ideation.

And while there will likely be some isolated tests on some use-case(s) in sand boxes in the coming year, it is important to reflect on the G3F vision which will be further elaborated on by Richard Brown (our head of technology) in the coming weeks.  If the fabric is only capable of handling one or two specific asset classes, it will fall short of the mandate of being a generalized fabric used to secure financial information for enterprises.

Why directly work with banks during this formative stage?  Why not just raise money and start building and shipping code?

To be frank, if financial institutions and regulatory bodies are not involved and engaged  from the beginning, then whatever fabric created will likely: 1) fail to be viewed as an authoritative and legal record of truth and 2) fall short of adequately address their exacting needs.  It would be a non-starter for a financial institution to use technology that is neither secure, or whose on-chain record is considered non-canonical by off-chain authorities.

What does that mean?

While some in the shared ledger community would like to believe that dry, on-chain code supersedes off-chain wet-code, the facts on the ground continue to contradict that thesis.  Therefore, if you are going to create a non-stealth fintech startup, it must be assumed that whatever products and services you create will need to operate under existing laws.  Otherwise you will spend most of your time hiding out in remote Caribbean islands or Thailand.

Growth

The R3 team is comprised of pragmatic thinkers and doers, experienced professionals who understand that a financial system cannot be built with up and down votes on reddit or whose transaction processors may reside in sanctioned countries.

standards

Source: XKCD

While nothing is finalized at the time of this writing, it is our aim at R3 to make the underlying base layer of this fabric both open sourced and an open standard.

After all, a foundation layer this critical would benefit from the collective eyeballs of the entire programming community.  It also bears mentioning that the root layer may or may not even be a chain of hashed blocks.

Furthermore, we are very cognizant of the fact that the graveyard for building industry standards is deep and wide.  Yet, as I mentioned to IBT, failing to create a universal standard will likely result in additional Balkanization, recreating the same silos that exist today and nullifying the core utility of a shared ledger.

It is a pretty exciting time in modern history, where being a nerd — even a cryptonerd — means you are asked to appear on stage in front of decision makers, policy makers, captains of industry and social media influencers.  Some even get to appear in person and not just as a telepresence robot.  Yet as neat as some of the moon math and cryptographic wizardry may be, failing to commercialize it in a sustainable manner could leave many of the innovative forks, libraries and github repos no more than starry-eyed science fair projects.

To that end, we are currently hiring talented developers keen on building a scalable, secure network.  In addition, rather than reinventing the wheel, we are also open to partnerships with existing technology providers who may hold key pieces to building a unified standard.  I am excited to be part of this mathematical industrial revolution, it’s time to strike while the iron is hot and turn good academic ideas into commercial reality.  Feel free to contact us.

What is permissioned-on-permissionless?

As of this writing, more than half of all VC funding to date has gone into building permissioned systems on top of a permissionless network (Bitcoin). Permissioned-on-Permissionless (PoP) systems are an odd hydra, they have all of the costs of Sybil-protected permissionless systems (e.g., high marginal costs) without the benefits of actual permissioned systems (e.g., fast confirmations, low marginal costs, direct customer service).

Thus it is curious to hear some enthusiasts and VCs on social media and at conferences claim that the infrastructure for Bitcoin is being rolled out to enable permissionless activity when the actual facts on the ground show the opposite is occurring.  To extract value, maintain regulatory compliance and obtain an return-on-investment, much of the investment activity effectively recreates many of the same permission-based intermediaries and custodians that currently exist, but instead of being owned by NYC and London entities, they are owned by funds based near Palo Alto.

For example, below are a few quotes over the past 18 months.

In a February 2014 interview with Stanford Insights magazine, Balaji Srinivasan, board partner at Andreessen Horowitz and CEO of 21inc, stated:

Thus, if the Internet enabled permissionless innovation, Bitcoin allows permissionless monetization.

In July 2015, Coinbase announced the winners of its hackathon called BitHack, noting:

The BitHack is important to us because it taps into a core benefit of Bitcoin: permissionless innovation.

Also in July 2015, Alex Fowler, head of business development at Blockstream, which raised $21 million last fall, explained:

At Blockstream, our focus is building and supporting core bitcoin infrastructure that remains permissionless and trustless with all of the security and privacy benefits that flow from that architecture.

Yet despite the ‘permissionless’ exposition, to be a customer of these companies, you need to ask their permission first and get through their KYC gates.

For instance, in Circle’s user agreement they note that:

Without limiting the foregoing, you may not use the Services if (i) you are a resident, national or agent of Cuba, North Korea, Sudan, Syria or any other country to which the United States embargoes goods (“Restricted Territories”), (ii) you are on the Table of Denial Orders, the Entity List, or the List of Specially Designated Nationals (“Restricted Persons”), or (iii) you intend to supply bitcoin or otherwise transact with any Restricted Territories or Restricted Persons.

Is there another way of looking at this phenomenon?

There have been a number of interesting posts in the past week that have helped to refine the terms and definitions of permissioned and permissionless:

Rather than rehashing these conversations, let’s look at a way to define permissionless in the first place.

Permissionless blockchains

permissionless blockchain
A couple weeks ago I gave a presentation at the BNY Mellon innovation center and created the mental model above to describe some attributes of a permissionless blockchain.  It is largely based on the characteristics described in Consensus-as-a-service.

DMMS validators are described in the Blockstream white paper.  In their words:

We  observe  that  Bitcoin’s  blockheaders  can  be  regarded  as  an  example  of  a dynamic-membership multi-party signature (or DMMS ), which we consider to be of independent interest as a new type of group signature. Bitcoin provides the first embodiment of such a signature, although this has not appeared in the literature until now. A DMMS is a digital signature formed by a set of signers which has no fixed size.  Bitcoin’s blockheaders are DMMSes because their proof-of-work has the property that anyone can contribute with no enrolment process.   Further,  contribution is weighted by computational power rather than one threshold signature contribution per party, which allows anonymous membership without risk of a Sybil attack (when one party joins many times and has disproportionate input into the signature).  For this reason, the DMMS has also been described as a solution to the Byzantine Generals Problem [AJK05]

In short, there is no gating or authorizing process to enroll for creating and submitting proofs-of-work: theoretically, validating Bitcoin transactions is permissionless.  “Dynamic-membership” means there is no fixed list of signatories that can sign (i.e. anyone in theory can).  “Multi-party” effectively means “many entities can take part” similar to secure multi-party computation.1

Or in other permission-based terms: producing the correct proof of work, that meets the target guidelines, permits the miner (block maker) to have full authority to decide which transactions get confirmed.  In other words, other than producing the proof-of-work, miners do not need any additional buy-in or vetting from any other parties to confirm transactions onto the blockchain. It also bears mentioning that the “signature” on a block is ultimately signed by one entity and does not, by itself, prove anything about how many people or organizations contributed to it.2

Another potential term for DMMS is what Ian Grigg called a Nakamoto signature.

Censorship-resistance, while not explicitly stated as such in the original 2008 white paper, was one of the original design goals of Bitcoin and is further discussed in Brown’s post above as well as at length by Robert Sams.

The last bucket, suitable for on-chain assets, is important to recognize because those virtual bearer assets (tokens) are endogenous to the network.  DMMS validators have the native ability to control them without some knob flipping by any sort of outside entity.  In contrast, off-chain assets are not controllable by DMMS validators because they reside exogenous to the network.  Whether or not existing legal systems (will) recognize DMMS validators as lawful entities is beyond the scope of this post.

Permissionless investments

What are some current examples of permissionless-related investments?

zooko permissionless

Source: Twitter

This past week I was in India working with a few instructors at Blockchain University including Ryan Charles.  Ryan is currently working on a new project, a decentralized version of reddit that will utilize bitcoin.

In point of fact, despite the interesting feedback on the tweet, OB1 itself, the new entity that was formed after raising $1 million to build out the Open Bazaar platform, is permission-based.

How is it permission-based when the DMMS validators are still permissionless?  Because OB1 has noted it will remove illicit content on-demand from regulators.

In an interview with CoinDesk, Union Square Venture managing partner, Brad Burnham stated that:

Burnham acknowledged that the protocol could be used by dark market operators, but stressed the OpenBazaar developers have no interest in supporting such use cases.  “They certainly won’t be in the business of providing enhanced services to marketplaces that are selling illegal goods,” he noted.

Based on a follow-up interview with Fortune, Brian Hoffman, founder of OB1 was less specific and a bit hand-wavy on this point, perhaps we will not know until November when they officially launch (note: Tor support seems to have disappeared from Open Bazaar).

One segment of permissionless applications which have some traction but have not had much (if any) direct VC funding include some on-chain/off-chain casinos (dice and gambling games) and dark net markets (e.g., Silk Road, Agora).  Analysis of this, more illicit segment will be the topic of a future post.

What are some other VC-funded startups that raised at least a Series A in funding, that could potentially be called permissionless?  Based on the list maintained by Coindesk, it appears just one is — Blockchain.info ($30.5 million).

Why isn’t Coinbase, Xapo or Circle?  These will be discussed below at length.

What about mining/hashing, aren’t these permissionless activities at their core?

Certain VC funded mining/hashing companies no longer offer direct retail sales to hobbyists, this includes BitFury and KnC Miner.  These two, known entities, through a variety of methods, have filed information about their operations with a variety of regulators.3  To-date BitFury has raised $60 million and it runs its own pool which accounts for about 16% of the network hashrate.  Similarly, KnC has raised $29 million from VCs and also runs its own pool, currently accounting for about 6% of the network hashrate.

What about other pools/block makers?  It appears that in practice, some require know-your-customer (KYC), know-your-business (KYB), know-your-miner (KYM) and others do not (e.g., selling custom-made hardware anonymously can be tricky).

  • MegaBigPower gathers KYC information.
  • Spondoolies Tech is currently sold out of their hardware but require some kind of customer information to fill out shipping address and customs details.  They have raised $10.5 million in VC funding.
  • GHash allows you to set up a pseudonymous account with throwaway email addresses (or via Facebook and Google+), but they have not published if they raised any outside funding
  • Most Chinese hashing and mining pools are privately financed.  For instance, Bitmain has not needed to raise funding from VCs (yet).  The also, currently, do not perform KYC on their users.  I spoke with several mining professionals in China and they explained that none of the big pools (Antpool, F2pool, BTC China pool, BW.com) require KYM at this time.  Over the past four days, these pools accounted for: 21%, 17%, 10% and 8% of the network hashrate respectively — or 56% altogether.  Update 7/29/2015: a representative at BTC China explained that: “Yes, we do KYC the members of our mining pool. We verify them the same way we KYC all registered users on BTCC.”
  • 21inc, not much more is known publicly at this time but if the idea of a “BitSplit” chip is correct, then what could happen is the following: as more chips are flipped on in devices, the higher the difficulty level rises (in direct proportion to the hashrate added).  As a result, the amount of satoshi per hash declines over time in these devices.  What this likely will lead to is a scenario in which the amount of satoshi mined by a consumer device will be less than “dust limit” which means a user will likely be unable to move the bitcoins off of the pool without obtaining larger amounts of bitcoin first (in order to pay the transaction fee).  Consequently this could mean the users will need to rely on the services provided by the pool, which could mean that the pool will need to become compliant with KYC/AML regulations.  All of this speculation at this time and is subject to changes.  They have received $121 million in VC funding.
  • As explained above, while individual buyers of hashing equipment, Bob and Alice, do typically have to “doxx” themselves up to some level, both Bob and Alice can resell the hardware on the second-hand market without any documentation.  Thus, some buyers wanting to pay a premium for hashing hardware can do so relatively anonymously through middlemen.4  This is similar to the “second-hand” market for bitcoins too: bitcoins acquired via KYC’ed gateways end up on LocalBitcoins.com and sold at a premium to those wanting to buy anonymously.

Notice a pattern?  There is a direct correlation between permissionless platforms and KYC/AML compliance (i.e., regulated financial service businesses using cryptocurrencies are permissioned-on-permissionless by definition).

Blockchain.info attempts to skirt the issue by marketing themselves as a software platform and for the fact that they do not directly control or hold private keys.5

This harkens back to what Robert Sams pointed out several months ago, that Bitcoin is a curious design indeed where in practice many participants on the network are now known, gated and authenticated except the transaction validators.

What about permissioned-on-permissionless efforts from Symbiont, Chain and NASDAQ?  Sams also discussed this, noting that:

Now, I am sure that the advocates of putting property titles on the bitcoin blockchain will object at this point. They will say that through meta protocols and multi-key signatures, third party authentication of transaction parties can be built-in, and we can create a registered asset system on top of bitcoin. This is true. But what’s the point of doing it that way? In one fell swoop a setup like that completely nullifies the censorship resistance offered by the bitcoin protocol, which is the whole raison d’etre of proof-of-work in the first place! These designs create a centralised transaction censoring system that imports the enormous costs of a decentralised one built for censorship-resistance, the worst of both worlds.

If you are prepared to use trusted third parties for authentication of the counterparts to a transaction, I can see no compelling reason for not also requiring identity authentication of the transaction validators as well. By doing that, you can ditch the gross inefficiencies of proof-of-work and use a consensus algorithm of the one-node-one-vote variety instead that is not only thousands of times more efficient, but also places a governance structure over the validators that is far more resistant to attackers than proof-of-work can ever be.

This phenomenon is something I originally dubbed “permissioned permissionlessness” for lack of a better term, but currently think permissioned-on-permissionless is more straightforward and less confusing.

What does this mean?

Permissioned-on-Permissionless

PoP blockchain
The Venn diagram above is another mental model I used at the BNY Mellon event.

As mentioned 3 months ago, in practice most block makers (DMMS validators) are actually known in the real world.

While the gating process to become a validator is still relatively permissionless (in the sense that no single entity authorizes whether or not someone can or cannot create proofs-of-work), the fact that they are self-identifying is a bit ironic considering the motivations for building this network in the first place: creating an ecosystem in which pseudonymous and anonymous interactions can take place:

The first rule of cypherpunk club is, don’t tell anyone you’re a cypherpunk.  The first rule of DMMS club is, don’t tell anyone you’re a DMMS.

The second bucket, neither censorship resistant nor trade finality, refers to the fact that large VC funded companies like Coinbase or Circle not only require identification of its user base but also be censor their customers for participating in trading activity that runs afoul of their terms of service.  Technically speaking, on-chain trade finality hurdles refers to bitcoin transactions not being final (due to a block reorg, a longer chain can always be found, undoing what you thought was a confirmed transaction).  This has happened several times, including notably in March 2013.

For instance, in Appendix 1: Prohibited Businesses and Prohibited Use, Coinbase lays out specific services that it prohibits interaction with, including gambling.  For example, about a year ago, users from Seals with Clubs and other dice/gambling sites noticed that they were unable to process funds from these sites through Coinbase and vice versa.

brian armstrong coinbase

Source: Twitter

The tweet above is from Brian Armstrong is the CEO of Coinbase, which is the most well-funded permissioned-on-permissionless startup in the Bitcoin ecosystem.  For its users, there is nothing permissionless about Bitcoin as they actively gate who can and cannot be part of their system and black list/white list certain activities, including mining (hashing) itself.6  It is not “open” based on common usage of the word.

In other words, contrary to what some Coinbase executives and investors claim, in an effort to extract value in a legally palatable manner, they must fulfill KYC/AML requirements and in doing so, effectively nullify the primary utility of a permissionless network: permissionlessness.  Furthermore, Coinbase users do not actually use Bitcoin for most transactions as they do not control the privkey, Coinbase does.  Coinbase users are not using Bitcoin on Coinbase, they are using an internal database.7 Or to use the marketing phrase: you are not your own bank, Coinbase is — which leads to a bevy of regulatory compliance questions beyond the scope of this post.8 However, once your bitcoins are out of Coinbase and into your own independent wallet where you control the private key, then you get the utility of the permissionless platform once more.

What are other permissioned-on-permissionless platforms?  Below are twenty-seven different companies that have raised at least a Series A (figures via CoinDesk) in alphabetical order:

  • Bitex.la: ($4 million)
  • BitGo: ($14 million)
  • BitGold: ($5.3 million)
  • Bitnet: ($14.5 million)
  • BitPay: ($32.5 million)
  • Bitreserve: ($14.6 million)
  • Bitstamp: ($10 million)
  • BitX: ($4.82 million)
  • BTC China ($5 million)
  • ChangeTip: ($4.25 million)
  • Chain: ($13.7 million)9
  • Circle: ($76 million)
  • Coinbase: ($106 million)
  • Coinplug: ($3.3 million)
  • Coinsetter: ($1.9 million)
  • Cryex: ($10 million)
  • GoCoin: ($2.05 million)
  • Huobi ($10 million)
  • itBit: ($28.25 million)
  • Korbit: ($3.4 million)
  • Kraken: ($6.5 million)
  • Mirror, formerly Vaurum: ($12.8 million)
  • OKCoin: ($11 million)
  • Ripple Labs ($37 million)
  • Vogogo ($21 million)
  • Xapo: ($40 million)

Altogether this amounts to around $492 million, which is more than half of the $855 million raised in the overall “Bitcoin space.”

What do these all have in common again?  Most are hosted wallets and exchanges that require KYC/AML fulfillment for compliance with regulatory bodies.  They require users to gain permission first before providing a service.

pie chart bitcoin funding
The chart above visualizes funding based on the schema’s explored in this post.  Based on a total venture capital amount of $855 million, in just looking at startups that have received at least a Series A, 57.5% or $492 million has gone towards permissioned-on-permissionless systems.  An additional $224 million, or 26.1% has gone towards mining and hashing.10

Permissionless-on-permissionless includes Blockchain.info, ShapeShift, Hive, Armory and a sundry of other seed-stage startups that collectively account for around $50 million or 5.8% altogether.  The remaining 10.6% include API services such as Gem and BlockCypher; hardware wallets such as Case and Ledger; and analytic services such as Tradeblock.  In all likelihood, a significant portion of the 10.6% probably is related to permissioned-on-permissionless (e.g., Elliptic, Align Commerce, Bonafide, Blockscore, Hedgy, BitPagos, BitPesa) but they have not announced a Series A (yet) so they were not included in the “blue” portion.

Ripple Labs

Why is Ripple Labs on that funding list above?  While Ripple is not directly related to Bitcoin, it is aggregated on the funding list by CoinDesk.

Is it permissioned or permissionless?  A few weeks ago I met with one of its developers, who said in practice, the validator network is effectively permissionless in that anyone can run a validator and that Ripple Labs validators will process transactions that include XRP.11

This past week, Thomas Kelleher tried to outline how Ripple Labs is some kind of “third way” system, that uses ‘soft permissions’ in practice.  There may be a case for granular permissions on a permissionless network, but it did not coherently arise in that piece.

For example, in early May, Ripple Labs announced that it had been fined by FinCEN for not complying with the BSA requirements by failing to file suspicious activity reports (SARs), including notably, on Roger Ver (who did not want to comply with its KYC requests).

In addition to the fine, Ripple Labs also implemented a new identification gathering process for KYC compliance, stating:

The Ripple network is an open network. No one, including Ripple Labs, can prevent others from using or building on the Ripple protocol as they desire. However, when Ripple Labs provides software, such as the Ripple Trade client, Ripples Labs may impose additional requirements for the use of the software. As such, Ripple Labs will require identification of Ripple Trade account holders.

We will ask you to submit personally identifiable information (PII) similar to what you would submit to open a bank account, such as full name, address, national ID number, and date of birth. Users may also be asked to upload their driver’s license or other identifying documents. We will use this information to verify your identity for compliance purposes. We take privacy seriously, so the information you provide during the customer identification process is encrypted and managed by Ripple Trade’s Privacy Policy.

In other words, Ripple Labs was just fined by FinCEN for doing the very thing that Kelleher wants you to believe he is not required to do.   All new Ripple Labs-based “wallets” (Ripple Trade wallets) require user info — this likely means they can control, suspend and block accounts.12  All eight of the main Ripple gateways are also obliged to gather customer information.  The current lawsuit between Jed McCaleb and Ripple Labs, over the proceeds of $1 million of XRP on Bitstamp, will probably not be the last case surrounding the identification and control of such “wallet” activity (e.g., specific XRP flagged).

Thus, while the Ripple network started out as permissionless, it could likely become permissioned at some point due to compliance requirements.  Why?  If you download and install rippled, in practice you are going to use the default settings which rely on Ripple Labs core nodes. In practice, “choose your own” means “choose the default” for 99% percent of its users, ergo Ripple Labs sets the defaults.13 In a paper recently published by Peter Todd, he explained there is no game theoretic advantage to selecting non-default configurations which were not discussed in Kelleher’s essay.

Bob cannot choose his own rules if he has to follow compliance from another party, Ripple Labs. The UNL set may converge on an explicit policy as nodes benefit from not letting other nodes validate (they can prioritize traffic).14

I reached out to Justin Dombrowski, an academic who has spent the past year independently studying different ledger systems for a variety of organizations.  In his view:

I have a hard time thinking of Ripple as anything but plain permissioned because I have a hard time thinking of a realistic circumstance under which an active user wouldn’t also have an account subject to KYC, or be indirectly connected to one. Sure, I can run a node for the purpose of experimenting with some Ripple app I’m developing, but at the end of the day I expect to be payed for that app. And I could mine for free—and yeah, in that case the network is permissionless for me—but that’s a atypical, trivial example I’d think. Ripple is theoretically permissionless, but practically not because incentives align only with permissioned uses.

As Dombrowski noted, things get taxonomically challenging when a company (Ripple Labs) also owns the network (Ripple) and has to begin complying with financial service regulations.  This trend will likely not change overnight and until it explicitly occurs, I will probably continue to put an asterisk next to its name.

Challenges for DMMS validators in a permissioned-on-permissionless world

Over the past month, I have been asked a number of questions by managers at financial institutions about using public / communal chains as a method for transferring value of registered assets.

For instance, what happens if Bank A pays a fee to a Bitcoin or Litecoin miner/mining pool in a sanctioned country (e.g., EBA concerns in July 2014)?

In February 2015, according to a story published by Free Beacon, Coinbase was on “the hot seat” for explicitly highlighting this use-case in an older pitch deck because they stated: “Immune to country-specific sanctions (e.g. Russia-Visa)” on a slide and then went on to claim that they were compliant with US Treasury and NY DFS requirements.

Another question I have been asked is, what if the Bitcoin or Litecoin miner that processes transactions for financial institutions (e.g., watermarked tokens) also processes transactions for illicit goods and services from dark net markets?  Is there any liability for a financial institution that continues to use this service provider / block maker?

Lastly, how can financial institutions identify and contact the miner/mining pool in the event something happens (e.g., slow confirmation time, accidentally sent the wrong instruction, double-spend attempt, etc.)?  In their view, they would like to be able to influence upgrades, governance, maintenance, uptime (i.e., typical vendor relationship).

Trade-offs

In the Consensus-as-a-service report I used the following chart showing trade-offs:permissioned tradeoffsI also used the following diagram to illustrate the buckets of a permissioned blockchain:

permissioned chains
Recall that the term “mintette” was first used by Ben Laurie in his 2011 paper describing known, trusted validators and was most recently used in Meiklejohn (2015).

The general idea when I published the report several months ago was that permissionless-on-permissioned (what effectively what Ripple sits) is untenable in the long-run: due to regulatory pressure it is impossible to build a censorship-resistant system on top of a permissioned network.

Ryan Shea pointed this out in his recent piece, noting that:

Permission-ed blockchains are useful for certain things but they are limited in what they can do. Fully decentralized, permission-less, censorship-resistant applications CANNOT be built on them, which for many is a deal-breaker.

What does this mean for your business or organization?  Before deciding what system(s) to use, it is important to look at what the organizations needs are and what the customer information requirements are.

Conclusions

As explored above, several startups and VC funds have unintentionally turned an expensive permissionless system into a hydra gated permissioned network without the full benefits of either.  If you are running a ledger between known parties who abide by government regulations, there is no reason to pay the censorship-resistance cost.  Full stop.15

fixing bitcoin

[The optics of permissioned-on-permissionless]

Most efforts for “legitimizing” or “fixing” Bitcoin involves counteracting features of Bitcoin that were purposefully designed such that it enables users to bypass third parties including governmental policies and regulations.  Businesses and startups have to fight to turn Bitcoin into something it isn’t, which means they are both paying to keep the “naughty” features and paying to hide them.  For example, if Satoshi’s goal was to create a permissioned system that interfaces with other permissioned systems, he would likely have used different pieces — and not used proof-of-work at all.

The commercial logic of this (largely) VC-backed endgame seems to be: “privatize” Bitcoin through a dozen hard forks (the block size fork is the start of this trend that could also change the 21 million bitcoin hard-cap).16

It seems increasingly plausible that some day we may see a fork between the “permissionless-on-permissionless” chain (a non-KYC’ed chain) and the “permissioned-on-permissionless” chain (a fully KYC’ed chain) — the latter comprising VC-backed miners, hosted wallets, exchanges and maybe even financial institutions (like NASDAQ).  The motivations of both are progressively disparate as the latter appears uninterested in developer consensus (as shown by the special interest groups wanting to create larger blocks today by ignoring the feedback from the majority of active core developers and miners).  At that point, there is arguably minimal-to-no need for censorship resistance because users and miners will be entirely permissioned (i.e. known by/to participating institutions and regulators).

When drilling down, some of the permissioned-on-permissionless investment appears to be a sunk cost issue: according to numerous anecdotes several of these VCs apparently are heavily invested in bitcoins themselves so they double down on projects that use the Bitcoin network with the belief that this will create additional demand on the underlying token rather than look for systems that are a better overall fit for business use-cases.17

This raises a question: is it still Bitcoin if it is forked and privatized?   It seems that this new registered asset is best called Bitcoin-in-name-only, BINO, not to be confused with bitcoin, the bearer asset.18

If the end game for permissionless systems is one in which every wallet has to be signed by something KYC/KYB approved, it appears then that this means there would be a near total permissioning of the ledger.  If so, why not use a permissioned ledger instead for all of the permissioned activity?

The discussion over centralized versus institutionalized will also be discussed in a future post.

[Acknowledgements: thanks to Richard Apodaca, Anton Bolotinsky, Arthur Breitman, Richard Brown, Dustin Byington, Justin Dombrowski, Thomas Kelleher, Yakov Kofner, Antony Lewis and John Whelan for their feedback.]

Endnotes

  1. See Does Smart Contracts == Trustless Multiparty Monetary Computation? []
  2. Thanks to Richard Brown for this insight. []
  3. In raising funds, they have “doxxed” themselves, providing information about founders and management including names and addresses.  They are no longer pseudonymous. []
  4. Thanks to Anton Bolotinsky for this insight. []
  5. Are there any other non-mining projects that are VC funded projects that do not require KYC?  A few notable examples include ShapeShift (which de-links provenance and does not require KYC from its users) and wallets such as Hive and Armory.  All three of these are seed-stage. []
  6. For more about know-your-miner and source of funds, see The flow of funds on the Bitcoin network in 2015 []
  7. Perhaps this will change in the future.  Coinbase users can now send funds both on-and-off-chain in a one-click manner. []
  8. Learning from the past to build an improved future of fintech and Distributed Oversight: Custodians and Intermediaries []
  9. Chain is working with NASDAQ on its new issuance program which requires KYC compliance.  In contrast, I created a new account for their API product today and it did not require any KYC/KYB. []
  10. See What impact have various investment pools had on Bitcoinland?  It bears mentioning that BitFury raised an additional $20 million since that post, bringing the publicly known amount to around $224 million. []
  11. Visited on July 2, 2015 []
  12. Using similar forensics and heuristics from companies like Chainalysis and Coinalytics, Ripple Labs and other organizations can likely gather information and data on Ripple users prior to the April 2015 announcement due to the fact that the ledger is public. []
  13. Two years ago, David Schwartz, chief cryptographer at Ripple Labs, posted an interesting comment related to openness and decentralization on The Bitcoin Foundation forum. []
  14. Thanks to Jeremy Rubin and Roberto Capodieci for their feedback. []
  15. Thanks to Arthur Breitman for this insight. []
  16. Thanks to Robert Sams for this insight. []
  17. Richard Apodaca, author of the forthcoming Decoding Bitcoin book, has another way of looking at VCs purchasing bitcoins, that he delves into on reddit twice. []
  18. One reviewer suggested that, “this would cease being bitcoin if the measuring stick is what Satoshi wanted.” []

Buckets of Permissioned, Permissionless, and Permissioned Permissionlessness Ledgers

A few hours ago I gave the following presentation to Infosys / Finacle in Mysore, India with the Blockchain University team.  All views and opinions are my own and do not represent those of either organization.

Learning from the past to build an improved future of fintech

[Note: below is a slightly edited speech I gave yesterday at a banking event in Palo Alto.  This includes all of the intended legalese, some of which I removed in the original version due to flow and time.  Special thanks to Ryan Straus for his feedback.  The views below are mine alone and do not represent those of any organization or individual named.]

Before we look to the future of fintech, and specifically cryptocurrencies and distributed ledgers, let’s look at the most recent past.  It bears mentioning that as BNY Mellon is the largest custodial bank in the world, we will see the importance of reliable stewardship in a moment below.

In January 2009 an unknown developer, or collective of developers, posted the source code of Bitcoin online and began generating blocks – batches of transactions – that store and update the collective history of Bitcoin: a loose network of computer systems distributed around the globe.

To self-fund its network security, networks like Bitcoin create virtual “bearer assets.” These assets are automatically redeemable with the use of a credential.  In this case, a cryptographic private key.  From the networks point of view, possession of this private key is the sole requirement of ownership.  While the network rules equivocate possession and control, real currency – not virtual currency – is the only true bearer instrument.  In other words, legal tender is the only unconditional exception to nemo dat quod non habet – also known as the derivative principal – which dictates that one cannot transfer better title than one has.

Several outspoken venture investors and entrepreneurs in this space have romanticized the nostalgia of such a relationship, of bearer assets and times of yore when a “rugged individual” can once again be their own custodian and bank.1 The sentimentality of a previous era when economies were denominated by precious metals held – initially not by trusted third parties – but by individuals, inspired them to invest what has now reached more than $800 million in collective venture funding for what is aptly called Bitcoinland.

Yet, the facts on the ground clearly suggests that this vision of “everyone being their own bank” has not turned into a renaissance of success stories for the average private key holder.  The opposite seems to have occurred as the dual-edged sword of bearer instruments have been borne out.  At this point, it is important to clearly define our terms.  The concepts of “custody” and “deposit” are often conflated.  While the concepts are superficially similar, they are very different from a legal perspective.  Custody involves the transfer of possession/control.  A deposit, on the other hand, occurs when both control and title is transferred.

Between 2009 and early 2014, based on public reports, more than 1 million bitcoins were lost, stolen, seized and accidentally destroyed.2 Since that time, several of the best funded “exchanges” have been hacked or accidentally sent bitcoins to the wrong customer.  While Mt. Gox, which may have lost 850,000 bitcoins itself, has attracted the most attention and media coverage – rightfully so – there is a never ending flow of unintended consequences from this bearer duality.3

For instance, in early January 2015, Bitstamp – one of the largest and oldest exchanges – lost 19,000 bitcoins due to social engineering and phishing via Gmail and Skype on its employees including a system administrator.4 Four months later, in May, Bitfinex, a large Asian-based exchange was hacked and lost around 1,500 bitcoins.5 In another notable incident, last September, Huobi, a large Bitcoin exchange in Beijing accidentally sent 920 bitcoins and 8,100 litecoins to the wrong customers.6  And ironically, because transactions are generally irreversible and the sole method of control is through a private key they no longer controlled them: they had to ask for the bitcoins back and hope they were returned.

A study of 40 Bitcoin exchanges published in mid-2013 found that at that time 18 out of 40 – 45% — had closed doors and absconded with some portion of customer funds.7 Relooking at that list today we see that about another five have closed in a similar manner.  All told, at least 15% if not higher, of Bitcoin’s monetary base is no longer with the legitimate owner.  Can you imagine if a similar percentage of real world wealth or deposits was dislocated in the same manner in a span of 6 years?8

In many cases, the title to this property is encumbered, leading to speculation that since many of these bitcoins are intermixed and pooled with others, a large percentage of the collective monetary base does not have clean title, the implications of which can be far reaching for an asset that is not exempted from nemo dat, it is not fungible like legal tender.9

As a consequence, because people in general don’t trust themselves with securing their own funds, users have given – deposited – their private keys with a new batch of intermediaries that euphemistically market themselves as “hosted wallets” or “vaults.” What does that look like in the overall scheme?  These hosted wallets, such as Coinbase and Xapo, have collectively raised more than $200 million in venture funding, more than a quarter of the aggregate funding that the whole Bitcoin space has received. Simultaneously, the new – often unlicensed – parties collectively hold several million bitcoins as deposits; probably 25-30% of the existing monetary base.10 Amazingly, nobody is actually certain whether a “hosted wallet” is a custodian of a customers bitcoin or acquired title to the bitcoin and is thus a depository.

Yet, in recreating the same financial intermediaries that they hoped to replace – in turning a bearer asset into a registered asset – some Bitcoin enthusiasts have done so in fashion that – as described earlier – has left the system ripe for abuse.  Whereas in the real world of finance, various duties are segregated via financial controls and independent oversight.11 In the Bitcoin space, there have been few financial controls.  For example, what we call a Bitcoin exchange is really a broker-dealer, clearinghouse, custodian, depository and an exchange rolled into one house which has led to theft, tape painting, wash trading, and front-running.12 All the same issues that led to regulatory oversight in the financial markets in the first place.

And while a number of the better funded and well-heeled hosted wallets and exchanges have attempted to integrate “best practices” and even third-party insurance into their operation, to date, there is only one Bitcoin “vault” – called Elliptic — that has been accredited with meeting the ISAE 3402 custodial standard from KPMG. Perhaps this will change in the future.

But if the point of the Bitcoin experiment, concept, lifestyle or movement was to do away or get away from trusted third parties, as described above, the very opposite has occurred.

What can be learned from this?  What were the reasons for institutions and intermediation in the first place?  What can be taken away from the recent multi-million dollar educational lesson?

We have collectively learned that a distributed ledger, what in Bitcoin is called a blockchain, is capable of clearing on-chain assets in a cryptographically verifiable manner, in near-real time all with 100% uptime because its servers – what are called validators – are located around the world.  As we speak just under sixty four hundred of these servers exist, storing and replicating the data so that availability to any one of them is, in theory, irrelevant.13

Resiliency, accountability and transparency, what’s not to like?  Why wouldn’t financial institutions want to jump on Bitcoin then, why focus on other distributed ledger systems?

One of the design assumptions in Bitcoin is that its validators are unknown and untrusted – that there is no gating or vetting process to become a validator on its open network.  Because it is purposefully expensive and slow to produce a block that the rest of the network will regard as valid, in theory, the rest of the network will reject your work and you will have lost your money.  Thus, validators, better technically referred to as a block maker, attempt to solve a benign math problem that takes on average about 10 minutes to complete with the hope of striking it rich and paying their bills. There are exceptions to this behavior but that is a topic for another time.14

The term trust or variation thereof appears 13 times in the final whitepaper.  Bitcoin was designed to be a solution for cypherpunks aiming to minimize trust-based relationships and mitigate the ability for any one party to censor or block transactions. Because mining validators were originally unknown and untrusted, to protect against history-reversing attacks, Bitcoin was purposefully designed to be resource-intensive and inefficient.15 That is to say attackers must expend real world resources, energy, to disrupt or rewrite history.  The theory is that this type of economic attack would stave off all but the most affluent nation-state actors; in practice this has not been the case, but that again is a topic for another speech.

Thus Bitcoin is perhaps the world’s first, commodity-based censorship resistance-as-a-service.  To prevent attackers on this communal network from reversing or changing transactions on a whim, an artificially expensive anti-Sybil mechanism was built in dubbed “proof of work” – the 10 minute math problem.  Based on current token value, the cost to run this network is roughly $300 million a year and it scales in direct proportion to the bitcoin market price.16

Thus there are trade-offs that most financial institutions specifically would not be interested in.

Why you may ask?

Because banks already know their customers, staff and partners. Their counterparties and payment processors are all publicly known entities with contractual obligations and legal accountability.  Perhaps more importantly, the relationship created between an intermediary and a customer is clear with traditional financial instruments.  For example, when you deposit money in your bank account, you know (or should know) that you are trading your money for an IOU from the bank.17 On the other hand, when you place money in a safe deposit box you know (or should know) that you retain title to the subject property.  This has important considerations for both the customer and intermediary.  When you trade your money for an IOU, you are primarily concerned with the financial condition of the intermediary.  However, when you retain title to an object held by somebody else, you care far more about physical and logical security.

As my friend Robert Sams has pointed out on numerous occasions, permissionless consensus as it is called in Bitcoin, cannot guarantee irreversibility, cannot even quantify the probability of a history-reversing attack as it rests on economics, not technology.18 Bitcoin is a curious design indeed where in practice many participants on the network are now known, gated and authenticated except the transaction validators.  Why use expensive proof-of-work at all at this point if that is the case?  What is the utility of turning a permissionless system into a permissioned system, with the costs of both worlds and the benefits of neither?

But lemonade can still be squeezed from it.

Over the past year more than a dozen startups have been created with the sole intent to take parts of a blockchain and integrate their utility within financial institutions.19 They are doing so with different design assumptions: known validators with contractual terms of service. Thus, just as PGP, SSL, Linux and other open source technology, libraries and ideas were brought into the enterprise, so too are distributed ledgers.

Last year according to Accenture, nearly $10 billion was invested in fintech related startups, less than half of one percent of which went to distributed ledger-related companies as they are now just sprouting.20

What is one practical use?  According to a 2012 report by Deutsche Bank, banks’ IT costs equal 7.3% of their revenues, compared to an average of 3.7% across all other industries surveyed.21)  Several of the largest banks spend $5 billion or more in IT-related operating costs each year.  While it may sound mundane and unsexy, one of the primary use cases of a distributed ledger for financial institutions could be in reducing the cost centers throughout the back office.

For example, the settlement and clearing of FX and OTC derivatives is an oft cited and increasingly studied use case as a distributed ledger has the potential to reduce counterparty and systemic risks due to auditability and settlement built within the data layer itself.22

How much would be saved if margining and reporting costs were reduced as each transaction was cryptographically verifiable and virtually impossible to reverse? At the present time, one publicly available study from Santander estimates that “distributed ledger technology could reduce banks’ infrastructure costs attributable to cross-border payments, securities trading and regulatory compliance by between $15-20 billion per annum by 2022.”23

With that said, in its current form Bitcoin itself is probably not a threat to retail banking, especially in terms of customer acquisition and credit facilities.  For instance, if we look at on-chain entities there are roughly 370,000 actors.  If the goal of Bitcoin was to enable end-users to be their own bank without any trusted parties, based on the aggregate VC funding thus far, around $2,200 has been spent to acquire each on-chain user all while slowly converting a permissionless system into a permissioned system, but with the costs of both.24

That’s about twice as much as the average bank spends on customer acquisition in the US.  While there are likely more than 370,000 users at deposit-taking institutions like Coinbase and Xapo, they neither disclose the monthly active users nor are those actual Bitcoin users because they do not fully control the private key.

If we were to create a valuation model for the bitcoin network (not the price of bitcoins themselves), the network would be priced extremely rich due to the wealth transfer that occurs every 10 minutes in the form of asset creation.  The network in this case are miners, the block makers, who are first awarded these bearer instruments.

How can financial institutions remove the duplicative cost centers of this technology, remove this $300 million mining cost, integrate permissioned distributed ledgers into their enterprise, reduce back office costs and better serve their customers?

That is a question that several hundred business-oriented innovators and financial professionals are trying to answer and we will likely know in less time it took Bitcoin to get this far.

Thanks for your time.

Endnotes:

  1. Why Bitcoin Matters by Marc Andreessen []
  2. Tabulating publicly reported bitcoins that were lost, stolen, seized, scammed and accidentally destroyed between August 2010 and March 2014 amounts to 966,531 bitcoins. See p. 196 in The Anatomy of a Money-like Informational Commodity []
  3. Mt. Gox files for bankruptcy, hit with lawsuit from Reuters []
  4. Bitstamp Incident Report []
  5. Bitfinex Warns Customers to Halt Deposits After Suspected Hack from CoinDesk []
  6. Why One Should Think Twice Before Trading On The Bitcoin Exchanges from Forbes []
  7. See Beware the Middleman: Empirical Analysis of Bitcoin-Exchange Risk by Tyler Moore and Nicolas Christin []
  8. This has occurred during times of war.  See The Monuments Men []
  9. Bitcoin’s lien problem from Financial Times and Uniform Commercial Code and Bitcoin with Miles Cowan []
  10. Based on anecdotal conversations both Coinbase and Xapo allegedly, at one point stored over 1 million bitcoins combined. See also: Too Many Bitcoins: Making Sense of Exaggerated Inventory Claims []
  11. See Distributed Oversight: Custodians and Intermediaries []
  12. See Segregation of Duties in the CEWG BitLicense comment []
  13. See Bitnodes []
  14. See Majority is not Enough: Bitcoin Mining is Vulnerable from Ittay Eyal and Emin Gün Sirer []
  15. See Removing the Waste from Cryptocurrencies: Challenges and More Challenges by Bram Cohen and Cost? Trust? Something else? What’s the killer-app for Block Chain Technology? by Richard Brown []
  16. See Appendix B []
  17. See A Simple Explanation of Balance Sheets (Don’t run away… it’s interesting, really!) by Richard Brown []
  18. Needing a token to operate a distributed ledger is a red herring []
  19. See The Distributed Ledger Landscape and Consensus-as-a-service []
  20. Fintech Investment in U.S. Nearly Tripled in 2014 from Accenture []
  21. IT in banks: What does it cost? from Santander []
  22. See No, Bitcoin is not the future of securities settlement by Robert Sams []
  23. The Fintech 2.0 Paper: rebooting financial services from Santander []
  24. One notable exception are branchless banks such as Fidor which is expanding globally and on average spends about $20 per customer.  See also How much do you spend on Customer Acquisition? Are you sure? []

Panel with financial service professionals involved with baking shared, replicated ledgers into organizations

The last part of the PwC discussion 10 days ago involved a panel with myself moderating, Peter Shiau (COO of Blockstack) and Raja Ramachandran (co-founder of eFXPath and an advisor at R3CEV).  Robert Schwentker (from Blockchain University) also helped provide a number of questions for us.

We cover a number of topics including use-cases of distributed ledgers for financial institutions.